Abstract
Omnidirectional stereo vision systems have been widely used as primary vision sensors in intelligent robot 3D measurement tasks, which require stereo calibration and rectification. Current stereo calibration and rectification methods suffer from complex calculations or a lack of accuracy. This paper establishes a simple and effective equivalency between an omnidirectional stereo vision system and a perspective vision system by studying stereo calibration and rectification methods. First, we improved the stereo calibration method. By applying the essential matrix, the complicated calibration process of the original method is simplified. By using a manual extraction method to extract corner points, noise error is eliminated and high precision is ensured. Second, we propose a new rectification method. By using the proposed simple rectification model and calibration data, the baseline length and an accurate column-aligned image pair are easily obtained, which reduces the computation time. The proposed stereo calibration and rectification method can simply and effectively obtain two key parameters of the triangulation formula for 3D measurement tasks: baseline length and parallax. Using real data captured by equipment, we performed experiments covering all the necessary stages to obtain a high-performance omnidirectional stereo vision system. Statistical analyses of the experimental results demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.