Abstract

Multileaf collimator (MLC) systems are available on most commercial linear accelerators, and many of these MLC systems utilize a design with rounded leaf ends and linear motion of the leaves. In this kind of system, the agreement between the digital MLC position readouts and the light field or radiation field edges must be achieved with software, since the leaves do not move in a focused motion like that used for most collimator jaw systems. In this work we address a number of the calibration and quality assurance issues associated with the acceptance, commissioning, and routine clinical use of this type of MLC system. These issues are particularly important for MLCs used for various types of intensity modulated radiation therapy (IMRT) and small, conformal fields. For rounded leaf end MLCs, it is generally not possible to make both the light and radiation field edges agree with the digital readout, so differences between the two kinds of calibrations are illustrated in this work using one vendor's MLC system. It is increasingly critical that the MLC leaf calibration be very consistent with the radiation field edges, so in this work a methodology for performing accurate radiation field size calibration is discussed. A system external to the vendor's MLC control system is used to correct or handle limitations in the MLC control system. When such a system of corrections is utilized, it is found that the MLC radiation field size can be defined with an accuracy of approximately 0.3 mm, much more accurate than most vendor's specifications for MLC accuracy. Quality assurance testing for such a calibration correction system is also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.