Abstract

The first step in developing travel time and water quality models in streams is to correctly model solute transport mechanisms. In this paper a comparison between two solute transport models is performed. The parameters of the Transient Storage model (TS) and the Aggregated Dead Zone model (ADZ) are estimated using data of thirty seven tracer experiments carried out under different discharges in five mountain streams of Colombian Los Andes. Calibration is performed with the generalized uncertainty estimation method (GLUE) based on Monte-Carlo simulations. Aspects of model parameters identifiability and model parsimony are analyzed and discussed. The TS model with four parameters shows excellent results during calibration but the model parameters present high interaction and poor identifiability. The ADZ model with two independent and clearly identifiable parameters gives sufficiently precise calibration results. As a conclusion, it is stated that the ADZ model with only two parameters is a parsimonious model that is able to represent solute transport mechanisms of advection and longitudinal dispersion in the studied mountain streams. A simple model parameter estimation methodology as a function of discharge is proposed in this work to be used in prediction mode of travel time and solute transport applications along mountain streams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call