Abstract

Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high resolution electron and photon energy measurements. Excellent energy resolution is crucial for studies of Higgs boson decays with electromagnetic particles in the final state, as well as searches for very high mass resonances decaying to energetic photons or electrons. The CMS electromagnetic calorimeter (ECAL) is a fundamental instrument for these analyses and its energy resolution is crucial for the Higgs boson mass measurement. Recently the energy response of the calorimeter has been precisely calibrated exploiting the full Run-II data, aiming at a legacy reprocessing of the data. A dedicated calibration of each detector channel has been performed with physics events such as electrons from W and Z boson decays, and photons from π0/η decays. This paper presents the calibration strategies that have been implemented and the excellent performance achieved by the CMS ECAL with the ultimate calibration of Run-II data, in terms of energy scale stability and energy resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.