Abstract

Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results.

Highlights

  • Development of a three-dimensional non-fiber based optical imaging system co-registered with a clinical modality requires calibration prior to clinical data collection in order to validate the imaging data

  • Near-infrared (NIR) spectral tomography (NIRST) uses light (600-1000nm) that is preferentially absorbed by endogenous tissue metabolic markers hemoglobin, water, and lipids that are often altered in the presence of malignancy [1,2,3,4,5]

  • near infrared spectral tomography (NIRST) alone suffers from low spatial resolution so it can be synergistically combined with detailed anatomic information from digital breast tomosynthesis (DBT)

Read more

Summary

Introduction

Development of a three-dimensional non-fiber based optical imaging system co-registered with a clinical modality requires calibration prior to clinical data collection in order to validate the imaging data. Calibration is a multi-step and continuous process that includes hardware component testing, data simulation, phantom experimentation and patient image analysis. It is essential for any imaging system intended for clinical use. DBT is an x-ray based breast imaging technique approved by the FDA for breast cancer screening. It is highly spatially resolved inplane, but the limited angle of source-detector rotation leads to partial volume averaging that reduces resolution parallel to the x-ray beam substantially. In the case of NIRST/DBT where DBT-derived regions-of-interest (ROIs) are incorporated into NIRST image reconstruction, the effects of (i) mischaracterization of the depth of an inclusion and (ii) under- or over-estimation of its volume need to be investigated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call