Abstract
BackgroundValid objective measurement is integral to increasing our understanding of physical activity and sedentary behaviours. However, no population-specific cut points have been calibrated for children with intellectual disabilities. Therefore, this study aimed to calibrate and cross-validate the first population-specific accelerometer intensity cut points for children with intellectual disabilities.MethodsFifty children with intellectual disabilities were randomly assigned to the calibration (n = 36; boys = 28, 9.53±1.08yrs) or cross-validation (n = 14; boys = 9, 9.57±1.16yrs) group. Participants completed a semi-structured school-based activity session, which included various activities ranging from sedentary to vigorous intensity. Direct observation (SOFIT tool) was used to calibrate the ActiGraph wGT3X+, which participants wore on the right hip. Receiver Operating Characteristic curve analyses determined the optimal cut points for sedentary, moderate, and vigorous intensity activity for the vertical axis and vector magnitude. Classification agreement was investigated using sensitivity, specificity, total agreement, and Cohen’s kappa scores against the criterion measure of SOFIT.ResultsThe optimal (AUC = .87−.94) vertical axis cut points (cpm) were ≤507 (sedentary), 1008−2300 (moderate), and ≥2301 (vigorous), which demonstrated high sensitivity (81−88%) and specificity (81−85%). The optimal (AUC = .86−.92) vector magnitude cut points (cpm) of ≤1863 (sedentary), 2610−4214 (moderate), and ≥4215 (vigorous) demonstrated comparable, albeit marginally lower, accuracy than the vertical axis cut points (sensitivity = 80−86%; specificity = 77−82%). Classification agreement ranged from moderate to almost perfect (κ = .51−.85) with high sensitivity and specificity, and confirmed the trend that accuracy increased with intensity, and vertical axis cut points provide higher classification agreement than vector magnitude cut points.ConclusionsThis study provides the first valid methods of interpreting accelerometer output in children with intellectual disabilities. The calibrated physical activity cut points are notably higher than existing cut points, thus raising questions on the validity of previous low physical activity estimates in children with intellectual disabilities that were based on typically developing cut points.
Highlights
Physical activity is associated with many physical and mental health benefits in children, such as reduced body mass index (BMI), increased bone health, reduced risk of metabolic syndromes, and lower rates of depression [1,2,3]
Valid objective measurement is integral to increasing our understanding of physical activity and sedentary behaviours
Direct observation (SOFIT tool) was used to calibrate the ActiGraph wGT3X+, which participants wore on the right hip
Summary
Physical activity is associated with many physical and mental health benefits in children, such as reduced body mass index (BMI), increased bone health, reduced risk of metabolic syndromes, and lower rates of depression [1,2,3]. In accordance with best practice guidelines on the development of effective interventions, research has to be based on valid measurement of various parameters of activity, such as intensity, frequency, and duration [8, 9]. This will increase our understanding of dose-response relationships and determinants of activity, from which interventions can be developed. This study aimed to calibrate and crossvalidate the first population-specific accelerometer intensity cut points for children with intellectual disabilities
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.