Abstract

Abstract Calibration in the robotic belt grinding of complex blades is considered as one of the key bottlenecks of measurement accuracy. To enhance the accuracy of robotic calibration system, an improved method is proposed in this paper to calibrate the tool (grinding machine) frame and workpiece (aero-engine blade) frame by holding the ruby probe as the main calibration tool. Firstly, the sphere-to-sphere method replacing the traditional point-to-point method is put forward to calibrate the flexible and fixed probe frame. Secondly, the calibrated flexible and fixed probe frame is employed to precisely seek the origin point of tool frame and then to calibrate it accurately. Thirdly, both the rough calibration (manual calibration) and fine calibration (auto calibration) are adopted to calibrate the workpiece frame, the resulting translation and rotation errors are controlled at small values to improve the calibration accuracy. Finally, a typical case on robotic belt grinding of aero-engine blade is conducted to validate the calibration results of the robotic belt grinding system (RBGS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.