Abstract

To better understand interglacial paleosol development by quantifying the paleosol development processes on the Chinese Loess Plateau (CLP), we need a soil genesis model calibrated for long timescales. Here, we calibrate a process-based soil genesis model, SoilGen2, by confronting simulated and measured soil properties for the Holocene and MIS-13 paleosols formed in the CLP for various parameter settings. The calibration was made sequentially on three major soil process formulations, including decalcification, clay migration and soil organic carbon, which are represented by various process parameters. The order of the tuned parameters was based on sensitivity analyses performed previously on the loess in West European and the CLP. After the calibration of the intrinsic soil process parameters, the effect of uncertainty of dust deposition rate on calibration results was assessed. Our results show that the simulated soil properties are very sensitive to ten reconstructed dust deposition scenarios, reflecting the propagation of uncertainty of dust deposition in model simulations. Our results also show the equal importance of calibrating soil process parameters and defining correct external forcings in the future use of soil models. Our calibrated model allows interglacial soil simulation in the CLP over long timescales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.