Abstract

This paper considers a class of functions referred to as convex-concave-convex (CCC) functions to calibrate unimodal or multimodal probability distributions. In discrete case, this class of functions can be expressed by a system of linear constraints and incorporated into an optimization problem. We use CCC functions for calibrating a risk-neutral probability distribution of obligors default intensities (hazard rates) in collateral debt obligations (CDO). The optimal distribution is calculated by maximizing the entropy function with no-arbitrage constraints given by bid and ask prices of CDO tranches. Such distribution reflects the views of market participants on the future market environments. We provide an explanation of why CCC functions may be applicable for capturing a non-data information about the considered distribution. The numerical experiments conducted on market quotes for the iTraxx index with different maturities and starting dates support our ideas and demonstrate that the proposed approach has stable performance. Distribution generalizations with multiple humps and their applications in credit risk are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.