Abstract

We present two different methods to estimate parameters within a partial differential equation model of cancer invasion. The model describes the spatio-temporal evolution of three variables—tumour cell density, extracellular matrix density and matrix degrading enzyme concentration—in a one-dimensional tissue domain. The first method is a likelihood-free approach associated with approximate Bayesian computation; the second is a two-stage gradient matching method based on smoothing the data with a generalized additive model (GAM) and matching gradients from the GAM to those from the model. Both methods performed well on simulated data. To increase realism, additionally we tested the gradient matching scheme with simulated measurement error and found that the ability to estimate some model parameters deteriorated rapidly as measurement error increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.