Abstract
Variable stars with well-calibrated period-luminosity relationships provide accurate distance measurements to nearby galaxies and are therefore a vital tool for cosmology and astrophysics. While these measurements typically rely on samples of Cepheid and RR-Lyrae stars, abundant populations of luminous variable stars with longer periods of $10 - 1000$ days remain largely unused. We apply machine learning to derive a mapping between lightcurve features of these variable stars and their magnitude to extend the traditional period-luminosity (PL) relation commonly used for Cepheid samples. Using photometric data for long period variable stars in the Large Magellanic cloud (LMC), we demonstrate that our predictions produce residual errors comparable to those obtained on the corresponding Cepheid population. We show that our model generalizes well to other samples by performing a blind test on photometric data from the Small Magellanic Cloud (SMC). Our predictions on the SMC again show small residual errors and biases, comparable to results that employ PL relations fitted on Cepheid samples. The residual biases are complementary between the long period variable and Cepheid fits, which provides exciting prospects to better control sources of systematic error in cosmological distance measurements. We finally show that the proposed methodology can be used to optimize samples of variable stars as standard candles independent of any prior variable star classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.