Abstract

We propose an easy-to-implement and accurate calibration method for large-scale stereo-digital image correlation (stereo-DIC). First, the intrinsic parameters of each camera are separately calibrated using a regular-sized phase target. Using phase-shifted circular fringe patterns that feature the advantage of being insensitive to the defocus, the phase target can be placed in the close range of each camera. Then, scale-free extrinsic parameters are computed from the epipolar geometry, which can be easily retrieved from DIC registration of homologous point pairs in the stereo images of a test specimen surface. These intrinsic and scale-free extrinsic parameters are used as the initial guess for further optimizing the calibration results. Further, by measuring objects with known physical size, the scale information of the stereo-DIC system can be determined. The metrological performance of the proposed method is evaluated by large-scale shape reconstruction and deformation measurement tests. The obtained results demonstrate that the proposed method is a viable solution for the large-scale 3D deformation measurement tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call