Abstract

AbstractCalibration error represents a significant source of uncertainty in quantitative applications of ground-based radar (GR) reflectivity data. Correcting it requires knowledge of the true reflectivity at well-defined locations and times during a volume scan. Previous work has demonstrated that observations from certain spaceborne radar (SR) platforms may be suitable for this purpose. Specifically, the Ku-band precipitation radars on board the Tropical Rainfall Measuring Mission (TRMM) satellite and its successor, the Global Precipitation Measurement (GPM) missionCore Observatorysatellite together provide nearly two decades of well-calibrated reflectivity measurements over low-latitude regions (±35°). However, when comparing SR and GR reflectivities, great care must be taken to account for differences in instrument sensitivity and frequency, and to ensure that the observations are spatially and temporally coincident. Here, a volume-matching method, developed as part of the ground validation network for GPM, is adapted and used to quantify historical calibration errors for three S-band radars in the vicinity of Sydney, Australia. Volume-matched GR–SR sample pairs are identified over a 7-yr period and carefully filtered to isolate reflectivity differences associated with GR calibration error. These are then used in combination with radar engineering work records to derive a piecewise-constant time series of calibration error for each site. The efficacy of this approach is verified through comparisons between GR reflectivities in regions of overlapping coverage, with improved agreement when the estimated errors are removed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.