Abstract
ABSTRACT Diffuse gamma-ray emission from interstellar clouds results largely from cosmic ray (CR) proton collisions with ambient gas, regardless of the gas state, temperature, or dust properties of the cloud. The interstellar medium is predominantly transparent to both CRs and gamma-rays, so GeV emission is a unique probe of the total gas column density. The gamma-ray emissivity of a cloud of known column density is then a measure of the impinging CR population and may be used to map the k-scale CR distribution in the Galaxy. To this end, we test a number of commonly used column density tracers to evaluate their effectiveness in modeling the GeV emission from the relatively quiescent, nearby ρ Ophiuchi molecular cloud. We confirm that both H i and an appropriate tracer are required to reproduce the total gas column densities probed by diffuse gamma-ray emisison. We find that the optical depth at 353 GHz ( ) from Planck best reproduces the gamma-ray data overall, based on the test statistic across the entire region of interest, but near-infrared stellar extinction also performs very well, with smaller spatial residuals in the densest parts of the cloud.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.