Abstract

Reliable estimates of short- and longer-term in situ growth and condition of organisms are critical if one hopes to understand how the environment regulates survival. This study reports the first comparison of somatic- (K), biochemical- (RNA–DNA ratio, RD) and otolith- (increment widths, OIW) based indices of condition of a young juvenile fish. Measurements were made on European sprat (Sprattus sprattus) that had i) known differences in somatic growth rate caused by providing different, constant prey ration levels, ii) been fed ad libitum at 7, 11, 15, 18 and 22°C, and iii) been deprived of prey for either 4, 8 or 12days and re-fed for 8days. All three proxies explained significant amounts (70 to 90%) of the variability in measured growth rate. In fish experiencing a change in their feeding level and concomitant change in mass-at-length (K), RD tracked changes in both length and mass while OIW only tracked changes in length. Values of OIW and RD were highest at 18°C suggesting that this is the optimal temperature for growth in these juveniles. During food deprivation, RD and OIW rapidly decreased and reached their lowest values within ~4days. Upon re-feeding, RD increased most rapidly, K was most variable and the response time in OIW was slowest (two-times slower than RD). These patterns reflected preferential allocation of food energy to restore body mass in recently re-fed fish prior to fish increasing both mass and length. These results indicate that the sensitivity and applicability of growth proxies depend on the recent feeding history, that proxies have different response times, and that caution be taken when inferring growth and condition in early life stages of fishes that forage in patchy prey environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.