Abstract

With the global proliferation of wind power, the need for accurate short-term forecasts of wind resources at wind energy sites is becoming paramount. Regime-switching space–time (RST) models merge meteorological and statistical expertise to obtain accurate and calibrated, fully probabilistic forecasts of wind speed and wind power. The model formulation is parsimonious, yet takes into account all of the salient features of wind speed: alternating atmospheric regimes, temporal and spatial correlation, diurnal and seasonal nonstationarity, conditional heteroscedasticity, and non-Gaussianity. The RST method identifies forecast regimes at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed meteorological observations in the vicinity of the wind farm are used as off-site predictors. The RST technique was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center in the U. S. Pacific Northwest. The RST point forecasts and distributional forecasts were accurate, calibrated, and sharp, and they compared favorably with predictions based on state-of-the-art time series techniques. This suggests that quality meteorological data from sites upwind of wind farms can be efficiently used to improve short-term forecasts of wind resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.