Abstract
Evidential clustering is an approach to clustering in which cluster-membership uncertainty is represented by a collection of Dempster-Shafer mass functions forming an evidential partition. In this paper, we propose to construct these mass functions by bootstrapping finite mixture models. In the first step, we compute bootstrap percentile confidence intervals for all pairwise probabilities (the probabilities for any two objects to belong to the same class). We then construct an evidential partition such that the pairwise belief and plausibility degrees approximate the bounds of the confidence intervals. This evidential partition is calibrated, in the sense that the pairwise belief-plausibility intervals contain the true probabilities “most of the time”, i.e., with a probability close to the defined confidence level. This frequentist property is verified by simulation, and the practical applicability of the method is demonstrated using several real datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.