Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes, and features myocardial fibrosis as its main pathological feature. Calcium sensing receptor (CaSR) is a G protein-coupled receptor, which involves in myocardial fibrosis by regulation of calcium homeostasis. Calhex231, the CaSR inhibitor, is not clear whether it regulates myocardial fibrosis in DCM. In the present study, type 1 diabetic (T1D) rats and primary neonatal rat cardiac fibroblasts were used to observe the role of Calhex231. In vivo experiments showed that in the T1D group, contractile dysfunction and the deposition of collagen I and III were obvious after 12 weeks. In vitro experiments, we found that high glucose (HG) could increase the expression of CaSR, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) collagen I/III, matrix metalloproteinase-2 (MMP-2), MMP9, along with cardiac fibroblast migration and proliferation. We further demonstrated that CaSR activation increased intracellular Ca2+ concentration and upregulated the expression of Itch (atrophin-1 interacting protein 4), which resulted in increasing the ubiquitination levels of Smad7 and upregulating the expression of p-Smad2, p-Smad3. However, treatment with Calhex231 clearly inhibited the above-mentioned changes. Collectively these results suggest that Calhex231 could inhibit Itch-ubiquitin proteasome and TGF-β1/Smads pathways, and then depress the proliferation of cardiac fibroblasts, along with the reduction deposition of collagen, alleviate glucose-induced myocardial fibrosis. Our findings indicate an important new mechanism for myocardial fibrosis, and suggest Calhex231 would be a new therapeutic agent for the treatment of DCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.