Abstract

We introduce algebraic dynamical systems, which consist of an action of a right LCM semigroup by injective endomorphisms of a group. To each algebraic dynamical system we associate a C*-algebra and describe it as a semigroup C*-algebra. As part of our analysis of these C*-algebras we prove results for right LCM semigroups. More precisely we discuss functoriality of the full semigroup C*-algebra and compute its K-theory for a large class of semigroups. We introduce the notion of a Nica-Toeplitz algebra of a product system over a right LCM semigroup, and show that it provides a useful alternative to study algebraic dynamical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.