Abstract
IntroductionIntracellular calcium overload is an important contributor to myocardial ischemia/reperfusion (MI/R) injury. Total saponins of the traditional Chinese medicinal plant Aralia elata (Miq.) Seem. (AS) are beneficial for treating MI/R injury, and Calenduloside E (CE) is the main active ingredient of AS. ObjectivesThis study aimed to investigate the effects of CE on MI/R injury and determine its specific regulatory mechanisms. MethodsTo verify whether CE mediated cardiac protection in vivo and in vitro, we performed MI/R surgery in SD rats and subjected neonatal rat ventricular myocytes (NRVMs) to hypoxia-reoxygenation (HR). CE’s cardioprotective against MI/R injury was detected by Evans blue/TTC staining, echocardiography, HE staining, myocardial enzyme levels. Impedance and field potential recording, and patch-clamp techniques of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to detect the function of L-type calcium channels (LTCC). The mechanisms underlying between CE and LTCC was studied through western blot, immunofluorescence, and immunohistochemistry. Drug affinity responsive target stability (DARTS) and co-immunoprecipitation (co-IP) used to further clarify the effect of CE on LTCC and BAG3. ResultsWe found that CE protected against MI/R injury by inhibiting calcium overload. Furthermore, CE improved contraction and field potential signals of hiPSC-CMs and restored sarcomere contraction and calcium transient of adult rat ventricular myocytes (ARVMs). Moreover, patch-clamp data showed that CE suppressed increased L-type calcium current (ICa,L) caused by LTCC agonist, proving that CE could regulate calcium homeostasis through LTCC. Importantly, we found that CE promoted the interaction between LTCC and Bcl2-associated athanogene 3 (BAG3) by co-IP and DARTS. ConclusionOur results demonstrate that CE enhanced LTCC-BAG3 interaction to reduce MI/R induced-calcium overload, exerting a cardioprotective effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.