Abstract

ABSTRACTBioplastics produced from meat and bone meal (MBM) suffer from rapid and drastic mechanical property deterioration because of their hydrophilic nature. This study investigates mechanical and water stability of composites produced from introduction of a minor component of a synthetic polyethylene as a binder phase to consolidate MBM. The milled and sieved MBM was compounded with 5–60 wt % linear low‐density polyethylene (LLDPE) and formed into composite sheets by calendering, which is an industrially relevant process. Results indicated that a minimum of 15 wt % LLDPE content was required to form a nominally continuous binder phase that allowed for good processability and environment stability of the composites. As expected, the water vapor permeability (WVP) and water absorption characteristics of the composites were intermediate between those of MBM and LLDPE. Sheets containing 15 wt % LLDPE absorbed up to 35 wt % water. Composites tested after being soaked in water showed an initial decrease in TS of about 30% for the first hour but then remained fairly unchanged in the next 72 hours, confirming their moderate environment stability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41145.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call