Abstract

Nanoaggregates composed of selected glycoforms from Escherichia coli 055:B5 lipopolysaccharide (LPS) were prepared by combining sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis, zinc–imidazole reverse staining, zinc chelation after cutting gel slices, elution with either 0.5% triethylamine (TEA) or 0.4% to 0.5% surfactant (SDS or deoxycholate [DOC]) from extrusion-generated gel microparticles, and centrifugal diafiltration after appropriate surfactant dilution. Dynamic light scattering allows detecting these aggregates, giving a size distribution from 10 to 100 nm in diameter. The formation of the aggregates prepared with selected DOC-eluted LPS glycoforms was notably improved over those prepared with TEA-eluted glycoforms. As the O-side chain length increased in the composition of the former aggregates, there was a gradual decrease in the electrophoretic mobility (from −1.2 to 0.01 10−8 m2/V s), giving a calculated zeta potential from −15 to 0.1 mV at pH 6.8. These aggregates were further characterized for their abilities to elicit agonistic effects on human Toll-like receptor 4, as shown by in vitro activation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) in engineered HEK293 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.