Abstract

Equilibrium measurements of the rate of binding of caldesmon and myosin S1 to actin-tropomyosin from different laboratories have yielded different results and have led to different models of caldesmon function. An alternate approach to answering these questions is to study the kinetics of binding of both caldesmon and S1 to actin. We observed that caldesmon decreased the rate of binding of S1 to actin in a concentration-dependent manner. The inhibition of the rate of S1 binding was enhanced by tropomyosin, but the effect of tropomyosin on the binding was small. Premixing actin with S1 reduced the amplitude (extent) of caldesmon binding in proportion to the fraction of actin that contained bound S1, but the rate of binding of caldesmon to free sites was not greatly altered. No evidence for a stable caldesmon-actin-tropomyosin-S1 complex was observed, although S1 did apparently bind to gaps between caldesmon molecules. These results indicate that experiments involving caldesmon, actin, tropomyosin, and myosin are inherently complex. When the concentration of either S1 or caldesmon is varied, the amount of the other component bound to actin-tropomyosin cannot be assumed to remain fixed. The results are not readily explained by a mechanism in which caldesmon acts only by stabilizing an inactive state of actin-tropomyosin. The results support regulatory mechanisms that involve changes in the actin-S1 interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.