Abstract

We consider the problem of identifying a unitary Yang–Mills connection \nabla on a Hermitian vector bundle from the Dirichlet-to-Neumann (DN) map of the connection Laplacian \nabla^*\nabla over compact Riemannian manifolds with boundary. We establish uniqueness of the connection up to a gauge equivalence in the case of trivial line bundles in the smooth category and for the higher rank case in the analytic category, by using geometric analysis methods. Moreover, by using a Runge-type approximation argument along curves to recover holonomy, we are able to uniquely determine both the bundle structure and the connection. Also, we prove that the DNmap is an elliptic pseudodifferential operator of order one on the restriction of the vector bundle to the boundary, whose full symbol determines the complete Taylor series of an arbitrary connection, metric and an associated potential at the boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.