Abstract

Volcano #1 is a large submarine stratovolcano with a summit caldera in the south central part of the Tonga Arc. We collected and analyzed multichannel seismic profiles in conjunction with magnetic data from Volcano #1 to investigate the structure of the intracaldera fill and processes of caldera formation. The intracaldera fill, exhibiting stratified units with a maximum thickness of 2 km, consists of at least four seismic units and a thick wedge of landslide debris derived from the caldera wall. The structural caldera floor, deepening toward the northwestern rim, suggests asymmetric collapse in the initial stage, which, in turn, appears to have contributed to the creation of a caldera elongated to the northwest by enhancing gravitational instability along the northwestern caldera boundary. Occasional, but repeated, eruptions resulted in a thick accumulation of the intracaldera fill and further subsidence in the mode of piston collapse. Magnetization lows are well-defined along the structural rim of the caldera that is interpreted as the inner principal ring fault. The magnetization lows indicate sites of submarine hydrothermal vents that caused an alteration of magnetic minerals. Faults recognized on the outer slope of the volcano are interpreted to be involved in hydrothermal fluid circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.