Abstract

AbstractWe employ near‐field GPS data to determine the subsurface geometry of a collapsing caldera during the 2018 Kīlauea eruption. Collapse occurred in 62 discrete events, with “inflationary” deformation external to the collapse, similar to previous basaltic collapses. We take advantage of GPS data from the collapsing block and independent constraints on the magma chamber geometry from inversion of deflation prior to collapse onset. This provides an unparalleled opportunity to constrain the collapse geometry. Employing an axisymmetric finite element model, the co‐collapse displacements are best explained by piston‐like subsidence along a high angle (∼85°) normal ring fault that may steepen to vertical with depth. Reservoir magma has compressibility of 2→15 × 10−10 Pa−1, indicating bubble volume fractions from 1% to 7% (lower if fault steepens with depth). Magma pressure increases during collapses are 1 to 3 MPa, depending on compressibility. Depressurization of a triaxial point source in a homogeneous half‐space fits the data well but provides a biased representation of the source depth and process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.