Abstract
Zadeh’s extension principle is one of the most classical techniques in fuzzy set theory. It is a tool which, for example, can naturally extend a real-valued continuous map to a map having fuzzy sets as its arguments. Theoretically, it is a nice mathematical tool used in many theories, e.g. in studies on fuzzy dynamical systems. However, concrete calculations or even approximations can be very difficult in general and, consequently, many approaches trying to solve this problem appeared. In this work we present a novel algorithm which can compute Zadeh’s extension of given continuous piecewise linear functions. Among other things, an advantage of this approach is that, unlike almost all former approaches, it can deal with discontinuities which naturally appear in simulations of fuzzy dynamical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.