Abstract

The oxygen isotope fractionation factors between the hydration complex of the alkali ions in the gas phase and a free water molecule have been computed on the basis of the energy surfaces calculated by Kistenmacher, Popkie and Clementi for a water molecule in the field of an alkali ion. For comparison with recently measured oxygen isotope fractionation factors in aqueous alkali halide solutions, the gas phase values are multiplied with the corresponding separation factors between water vapor and liquid water thus relating the hydration complex in the gas phase with pure water. Qualitative agreement between computed and observed fractionation factors has been found for H2O and D2O even neglecting the isotope effect connected with the transfer of the hydration complex from the gas phase to the solution. This transfer effect is estimated for H2O by a quantitative comparison of computed and observed oxygen isotope fractionation factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.