Abstract

The self-diffusion process in B2 type intermetallic compound AlCo has been investigated by the first-principles calculations within the frame work of density functional theory (DFT). The obtained mono-vacancy formation, migration and activation energies for four self-diffusion mechanisms, the next-nearest-neighbor (NNN) jump, [110] six-jump cycle (6JC), straight [100] 6JC and bent [100] 6JC diffusion show that the NNN jump mechanism of Co vacancy requires the lowest activation energy (Q = 6.835 eV ) in these diffusion mechanisms, which indicates that it is the main way of self-diffusion in AlCo . The electronic structure including the electron density difference on (-1 1 0) plane as well as atomic Mulliken populations were calculated, and the change of bonding behavior during the [110] 6JC process was discussed in detail. Finally, the self-diffusion coefficients of NNN jump and 6JC mechanisms for AlCo were also studied via the first-principles calculations and semi-empirical predictions, which indicates that the self-diffusion coefficients for NNN jump of Co vacancy show the highest value than the others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.