Abstract

Positronium (Ps) scattering by noble-gas atoms (He, Ne, Ar, Kr, and Xe) is studied in the frozen-target approximation and with inclusion of the van der Waals interaction. Single-particle electron and positron states in the field of the target atom are calculated, with the system enclosed by a hard spherical wall. The two-particle Ps wave function is expanded in these states, and the Hamiltonian matrix is diagonalized, giving the Ps energy levels in the cavity. Scattering phase shifts, scattering lengths, and cross sections are extracted from these energies and compared with existing calculations and experimental data. Analysis of the effect of the van der Waals interaction shows that it cannot explain the recent experimental data of Brawley et al. for Ar and Xe [Phys. Rev. Lett. 115, 223201 (2015)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.