Abstract

A model-potential approach to calculating positron-molecule binding energies and annihilation rates is developed. Unlike existing ab initio calculations, which have mostly been applied to strongly polar molecules, the present methodology can be applied to both strongly polar and weakly polar or nonpolar systems. The electrostatic potential of the molecule is calculated at the Hartree-Fock level, and a model potential that describes short-range correlations and long-range polarization of the electron cloud by the positron is then added. The Schrödinger equation for a positron moving in this effective potential is solved to obtain the binding energy. The model potential contains a single adjustable parameter for each type of atom present in the molecule. The wave function of the positron bound state may be used to compute the rate of electron-positron annihilation from the bound state. As a first application, we investigate positron binding and annihilation for the hydrogen cyanide molecule. Results for the binding energy are found to be in accord with existing calculations, and we predict the rate of annihilation from the bound state to be Γ = 0.1-0.2 × 109 s-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.