Abstract

We report a theoretical study of mode-specific tunneling splittings in double-hydrogen transfer in trans-porphycene. We use a novel, mode-specific "Qim path method", in which the reaction coordinate is the imaginary-frequency normal mode of the saddle point separating the equivalent minima. The model considers all 108 normal modes and uses no adjustable parameters. The method gives the ground vibrational-state tunneling splitting, as well the increase in the splitting upon excitation of certain modes, in good agreement with experiment. Interpretation of these results is also transparent with this method. In addition, predictions are made for mode excitations not investigated experimentally. Results for d1 and d2 isotopolgues are also in agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.