Abstract
This research intends to investigate a mathematical model for In-doped silicon (n) structure, and calculate the absorbance of the simulated cell, then study the effect of impurity photovoltaic effect on the responsivity and internal quantum efficiency using the Shockley–Read–Hall model. It is found that the internal flux inside the simulated Lambertian cell could be enhanced as much as 25 times as a result of light trapping. Maximum responsivity and internal quantum efficiency of the simulated cell was obtained at a wavelength around 1 μm and 10 17 cm −3 indium concentration. Near infrared response of the simulated cell is improved due to the enhancements of sub-band gap response by indium doping. To compare the mathematical model with the practical results, few samples of In-doped n-type silicon structures have been fabricated using the thermal vacuum resistive technique. Maximum responsivity and maximum internal quantum efficiency are obtained at wavelength 0.9–1 μm and 3.96×10 17 cm −3 indium concentration. The results of the simulated and practical cells agree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.