Abstract
The phase-field crystal (PFC) method is an emerging coarse-grained atomistic model that can be used to predict material properties. In this work, we describe procedures for calculating isothermal elastic constants using the PFC method. We find that the conventional procedures used in the PFC method for calculating the elastic constants are inconsistent with those defined from a theory of thermoelasticity of stressed materials. Therefore we present an alternative procedure for calculating the elastic constants that are consistent with the definitions from the thermoelasticity theory, and show that the two procedures result in different predictions. Furthermore, we employ a thermodynamic formulation of stressed solids to quantify the differences between the elastic constants obtained from the two procedures in terms of thermodynamic quantities such as the pressure evaluated at the undeformed state.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.