Abstract
Analyses of the resonant multiphoton ionization of atoms require knowledge of ac Stark energy shifts and of multiphoton, bound-to-bound state, transition amplitudes. In this paper, we consider the three-photon photoionization of hydrogen atoms at frequencies that are at and surrounding the two-photon 1s to 2s resonance. AC energy shift sums of both the 1s and 2s states are calculated as a function of the laser frequency along with two-photon 1s → 2s resonant transition amplitude sums. These quantities are calculated using an extended version of a method, which has often been employed in a variety of ways, of calculating these sums by expressing them in terms of solutions to a variety of differential equations that are derived from the different sums being evaluated. We demonstrate how exact solutions are obtained to these differential equations, which lead to exact evaluations of the corresponding sums. A variety of different cases are analysed, some involving analytic continuation, some involving real number analysis and some involving complex number analysis. A dc Stark sum calculation of the 2s state is carried out to illustrate the case where analytic continuation, pole isolation and pole subtraction are required and where the calculation can be carried out analytically; the 2s state, ac Stark shift sum calculations involve a case where no analytic continuation is required, but where the solution to the differential equation produces complex numbers owing to the finite photoionization lifetime of the 2s state. Results from these calculations are then used to calculate three-photon ionization probabilities of relevance to an analysis of the multiphoton ionization data published by Kyrala and Nichols (1991 Phys. Rev. A 44, R1450).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.