Abstract
We present fine-structure-resolved collisional rate coefficients for the NH(X(3)Σ(-))-He van der Waals complex. The calculations are based on the state-of-the-art potential energy surface [Cybulski et al., J. Chem. Phys. 122, 094307 (2005)]. Close-coupling calculations of the collisional excitation cross sections of the fine-structure levels of NH by He are calculated for total energies up to 3500 cm(-1), which yield, after thermal average, rate coefficients up to 350 K. The fine-structure splitting of rotational levels is taken into account rigorously. The propensity rules between fine-structure levels are reported, and it is found that F-conserving cross sections are much larger than F-changing cross sections, as expected from theoretical considerations. The calculated rate coefficients are compared with available experimental measurements at room temperature and a fairly good agreement is found between experimental and theoretical data. The agreement confirms the relatively good quality of the scattering calculations and also the accuracy of the potential energy surface used in this work. The new set of thermal rate coefficients for this system may be used for improvements in astrophysical and atmospherical modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Chemical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.