Abstract

Instruments designed to record high-intensity gamma-ray flashes must have fast time response, wide dynamic range, and good rejection of photon backgrounds at lower energies. In principle, plastic scintillators can easily provide the necessary time response and dynamic range; like other photon detectors, however, they must be carefully shielded to reduce their low-energy sensitivity. This shielding is often complicated by the need to use different optical sensors to cover the full dynamic range, which each sensor requiring a separate opening through the shielding. In this detector, a high-sensitivity photomultiplier tube handles low-intensity signals, and a silicon photodiode covers high intensities. These electronic components, particularly the diode, may also respond directly to incident radiation, so localized shielding must be provided. To reduce the detector`s total mass, the scintillator and photodiode are enclosed in a relatively thick, tight-fitting inner shield, which is surrounded by a thin outer shield to reduce the leakage through any gaps. Although efficient, this arrangement demands careful design and testing. This report describes such an analysis, which uses Monte Carlo simulations to develop a comprehensive model of the detector at photon energies from threshold to above 10 MeV. Included are discussions of the fundamental responses of the unshielded silicon diode and plastic scintillator, explanations of the effectiveness of different shielding materials, studies of calibration sources, and comparisons with laboratory tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.