Abstract

Laser damage phenomena are governed by a number of different effects for the respective operation modes and pulse durations. In the ultra short pulse regime the electronic structure in the dielectric coating and the substrate material set the prerequisite for the achieved laser damage threshold of an optical component. Theoretical considerations have been done to assess the impact of contributing ionization phenomena in order to find a valid description for laser-induced damage in the femtosecond (fs) domain. Subsequently, a special set of sample has been designed to verify these considerations via ISO certified laser damage testing. Examining the theoretical and experimental data reveals the importance of multi-photon absorption for the optical breakdown. For titania, the influence of multi-photon absorption has been clearly shown by a quantized wavelength characteristic of the laser damage threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.