Abstract

We consider vector-valued autonomous equations of the form x' = f(x) + phi with analytic f and investigate the nonanticipative solution operator phi bar right arrow A(phi) in terms of its Volterra series. We show that Volterra kernels of order > 1 occurring in the series expansion of the solution operator A are continuous functions, and establish recurrence relations between the kernels allowing their explicit calculation. A practical tensor calculus is provided for the finite-dimensional case. In addition to analytically calculating the kernels, we present an algorithm to numerically obtain them from the output x(t) through sampling the input space by linear combinations of delta functions. We call this differential sampling. It is a nonlinear analogue of the classical method of impulse response. We prove a continuity theorem stating that, in the finite-dimensional case, approximate delta functions give rise to approximate Volterra kernels and that continuity holds in the sense of weak convergence. Finally, we discuss a practical implementation of sampling and relate it to the Wiener method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call