Abstract
Motivated by the results of the electroweak precision experiments, studies of two-loop self-energy Feynman diagrams are performed. An algebraic method for the reduction of all two-loop self-energies to a set of standard scalar integrals is presented. The gauge dependence of the self-energies is discussed and an extension of the pinch technique to the two-loop level is worked out. It is shown to yield a special case of the background-field method which provides a general framework for deriving Green functions with desirable theoretical properties. The massive scalar integrals of self-energy type are expressed in terms of generalized multivariable hypergeometric functions. The imaginary parts of these integrals yield complete elliptic integrals. Finally, one-dimensional integral representations with elementary integrands are derived which are well suited for numerical evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.