Abstract
A deterministic code was developed for the calculation of true coincidence summing correction factors and has been incorporated into the EFFTRAN tool. The approach is aimed at the analysis of extended samples measured on p-type HPGe detectors in environmental gamma-ray spectrometry and was verified against the results of a state-of-the-art full Monte Carlo code. The two sets of results matched on average within 1%. Our code requires no measurements in addition to a standard full-energy-peak calibration, has a very short run time and takes into account the spatial variation of the efficiency across the sample volume. The EFFTRAN code is free software, available from the authors on request.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.