Abstract

A general strategy is described for the evaluation of transition matrix elements between pairs of full class CI wave functions built up from mutually nonorthogonal molecular orbitals. A new method is proposed for the counter-transformation of the linear expansion coefficients of a full CI wave function under a nonsingular transformation of the molecular-orbital basis. The method, which consists in a straightforward application of the Cauchy–Binet formula to the definition of a Slater determinant, is shown to be simple and suitable for efficient implementation on current high-performance computers. The new method appears mainly beneficial to the calculation of miscellaneous transition matrix elements among individually optimized CASSCF states and to the re-evaluation of the CASCI expansion coefficients in Slater-determinant bases formed from arbitrarily rotated (e.g., localized or, conversely, delocalized) active molecular orbitals. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call