Abstract

AbstractA program is demonstrated which apart from linear finite elements in time also includes elements with shape functions of the second and third degree. The algorithm for discretization in the time dimension is described and, using the example of a parabolic time element, the coefficients required to form the global system are given. By various test examples the efficiency of the process is examined by comparison with the customary difference method. Generally, with finite elements in time, the solution has better stability. Comparing the time required for calculation with the accuracy of the solution it would appear that in examining problems where boundary conditions are constant in time, higher order time elements are no improvement over the linear time element. However, for the purpose of reproducing periodic processes, higher order time elements offer an advantage in that one is not limited to linear variations of the boundary conditions within the element. Thus, for example, the temperature curve for parabolic variation of the surface temperature can be reproduced with close approximation by two time elements per period and a shape function of the third degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call