Abstract

A numerical method for calculating three-dimensional, steady or unsteady, incompressible, viscous flow is described. The conservation equations for mass and momentum and the equations of the k–ε turbulence model are solved with a finite volume method on nonorthogonal boundary-fitted grids. The method employs cell-centered variable arrangement and Cartesian velocity components. The SIMPLE algorithm is used to calculate the pressure and to enforce mass conservation. The computer code is vectorizable as far as possible to achieve an optimal performance on modern vector computers. Results of steady flow calculations in the guide vane, the pump rotor, and the turbine rotor and of the unsteady interaction simulation of the pump and the turbine of a one-stage one-phase non-automotive hydrodynamic torque converter are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call