Abstract
A conventional energy product calculated by the product of the B-field and the H-field is not sufficient for representing the performance of a magnet because it considers the homogeneous and only the uniaxial magnetic properties of the magnet. The conventional energy product has been compared with another energy product obtained by integrating the scalar product of the B-field and the H-field of each cell composed of the three-dimensional components. We investigated a model system by micromagnetic simulation using finite differential method (FDM) and calculated the full hysteresis of the magnet. The model system of a Nd2Fe14B magnet composed of grains with a diameter of about 100 nm was assumed. In the case of the isotropic multi-grain magnet, the energy product calculated by the integration method was 28% larger than the energy product obtained by the conventional way, although a discrepancy between the distribution of the magnetizations and the demagnetizing fields at the reversal process resulted in the decrease of the energy product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.