Abstract

The prediction of the laminar to turbulent transition is essential in the calculation of turbine blades, compressor blades or airfoils of airplanes since a non negligible part of the flow field is laminar or transitional. In this paper we compare the prediction capability of the Detached Eddy Simulation (DES) with the Large Eddy Simulation (LES) using the high-pass filtered (HPF) Smagorinsky model (Stolz et al.[1]) when applied to the calculation of transitional flows on turbine blades. Detailed measurements from Canepa et al.[2] of the well known VKI-turbine blade served to compare our results with the experiments. The calculations have been made on a fraction of the blade (10%) using non-reflective boundary conditions of Freund at the inlet and outlet plane extended to internal flows by Magagnato et al.[3] in combination with the Synthetic Eddy Method (SEM) proposed by Jarrin et al.[4]. The SEM has also been extended by Pritz et al.[5] for compressible flows. It has been repeatedly shown that hybrid approaches can satisfactorily predict flows of engineering relevance. In this work we wanted to investigate if they can also be used successfully in this difficult test case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call