Abstract

This paper presents a physicomathematical model and a method for calculating the parameters of the transition of a SRM to steady-state operation based on the design features of the propellant charge, the initial conditions in the motor, and the interrelated processes such as the formation and motion of compression waves and shock waves in the channel of the charge; the motion and mixing of the igniter combustion products containing a condensed phase with the initial gas and the combustion products of the charge; gradual heating and ignition of the surface of the charge. The developed programis used to explain the difference between the experimental pressure-time curves in the region of the transition of a large-size motor model to steady-state operation, obtained in bench tests under atmospheric conditions and on a high-altitude test facility at an initial motor pressure of 0.25 · 105 Pa. It is shown that ignition of the charge in vacuum produces more favorable conditions for heat transfer than ignition at atmospheric pressure. In the channel, this is due to an increase in the velocity of the igniter combustion products behind the transmitted shock wave, and in the submerged region and the charge slots, due to the minimum absorption of the radiation from the combustion products by the rarefied initial gas (air) present there.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call