Abstract

The buoyancy-driven flow in a tall rectangular cavity of 5:1 aspect ratio with a Rayleigh number of 4 ×1010 is calculated using finite volume methods. The CELS solver is extended to be able to handle large density variations. CELS is compared with SIMPLEC, and it is shown to be up to more than 4 times as fast as SIMPLEC. A modified form of a low Reynolds number κ-e turbulence model is developed. This model is consistent in its near-wall behavior, and it allows simulation of the decay of grid turbulence. The model developed by Lam and Bremhorst [1] is also tested. Both turbulence models are shown to predict the transitional and relaminarization regions according to experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.