Abstract

Surface tension is probably the most important interfacial property and a large number of techniques have been devoted to its calculation. Usually, this calculation is carried out using mechanical or thermodynamic definitions. The mechanical route uses an arbitrary choice to affect the contribution of the pairwise force. To overcome this arbitrariness, a thermodynamic route based on the area perturbation (test-area (TA) method) has been developed for the calculation of surface tension. The volume perturbation (VP) method provides an original route to compute the components of the pressure tensor. These two routes are developed from the perturbation theory leading to working expressions using exponential averages of energy. The use of exponential averages makes the calculation strongly dependent on the occurrence of low values of ΔU. Additionally, the decomposition of the energy to obtain local surface tension is nontrivial. From the explicit derivation of the partition function the exponential average is avoided providing an interesting alternative to TA, VP, and mechanical methods. To make a consistent comparison, we study the profiles of the surface tension along the direction normal to the surface for the different definitions and techniques in the cases of liquid-vapor interfaces of acids gases, binary, and apolar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.