Abstract

The sun protection factor (SPF) depends on UV filter composition, and amount and type of vehicle of the applied sunscreen. In an earlier work, we showed that the vehicle affected the average thickness of sunscreen film that is formed upon application to a skin substrate and that film thickness correlated significantly with SPF in vitro. In the present study, we quantitatively assess the role for sunscreen efficacy of the complete film thickness frequency distribution of sunscreen measured with an oil-in-water cream, an oil-in-water spray, a gel, a water-in-oil, and an alcoholic spray formulation. A computational method is employed to determine SPF in silico from calculated UV transmittance based on experimental film thickness and thickness distribution, and concentration and spectral properties of the UV filters. The investigated formulations exhibited different SPFs in vitro and different film thickness distributions especially in the small thickness range. We found a very good agreement between SPF in silico and SPF in vitro for all sunscreens. This result establishes the relationship between sun protection and the film thickness distribution actually formed by the applied sunscreen and demonstrates that variation in SPF between formulations is primarily due to their film forming properties. It also opens the possibility to integrate the influence of vehicle into tools for in silico prediction of the performance of sunscreen formulations. For this, the use of the Gamma distribution was found to be appropriate for describing film thickness distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call